Primitive Polynomials (Mod 2)

By E. J. Watson

The following list contains one example of a primitive polynomial (mod 2) for each degree $n, 1 \leq n \leq 100$. It was compiled with the aid of the Mercury computer at Manchester University by the following method.

The polynomials $P_n(x) \pmod{2}$ of degree *n* were tested in their natural order until a primitive polynomial was found. The test comprised three stages. In the first stage the small primes, of degree up to 9, were tried as possible factors (mod 2) of P_n . If no factor was found P_n went forward to the second stage, which tested whether P_n divides $x^N - 1$, where $N = 2^n - 1$. If it does, and N is prime (a Mersenne prime), this suffices to prove that P_n is primitive. If N is composite, however, P_n might divide $x^M - 1$, where M is a factor of N, and then P_n would not be primitive. The third stage was, therefore, a trial of this possibility, in which M took the values N/p, where p runs through the prime factors of N.

The two latter stages were carried out by a process in which the computer repeated the operations of squaring, possibly multiplying by x (depending on the binary representation of M), then dividing by P_n . The prime factors of N were taken from the tables of Kraïtchik [1], supplemented by Robinson's [2] further decomposition of $2^{95} - 1$. If any more of these 'prime' factors should turn out to be composite, doubt would be cast on the corresponding P_n . Mersenne polynomials for n = 107 and 127 are also given. The prime $x^{127} + x + 1$ was found by Zierler [3]. Its nature follows from the general result that if $\Sigma a_n x^n$ divides $\Sigma c_n x^n \pmod{p}$, then

$$\Sigma a_n x^{p^n}$$
 divides $\Sigma c_n x^{p^n} \pmod{p}$.

The primitive character of each polynomial $P_n(x)$ listed has been checked by a repetition of the second and third stages on the conjugate polynomial $x^n P_n(x^{-1})$. In the list only the degrees of the separate terms in P_n are given, thus

127 1 0 stands for $x^{127} + x + 1$.

Department of Mathematics University of Manchester

1. M. KRAÏTCHIK, Introduction à la Théorie des Nombres, Gauthier-Villars, Paris, 1952.

R. M. ROBINSON, "Some factorizations of numbers of the form 2ⁿ ± 1," MTAC, v. 11, 1957, p. 265-268.
 N. ZIERLER, "Linear recurring sequences," J. Soc. Indust. Appl. Math., v. 7, 1959, p.

3. N. ZIERLER, "Linear recurring sequences," J. Soc. Indust. Appl. Math., v. 7, 1959, p. 31-48.

Received December 18, 1961.

							2 0091001100								
$1 \\ 2 \\ 3 \\ 4 \\ 5$	${0 \\ 1 \\ 1 \\ 1 \\ 2 }$	0 0 0 0						$51 \\ 52 \\ 53 \\ 54 \\ 55$	6 3 6 6	${3 \atop 2} \\ {5 \atop 2}$	1 1 4 1	0 0 3 0	2	0	
6 7 8 9 10	$1 \\ 1 \\ 4 \\ 4 \\ 3$	0 0 3 0 0	2	0				56 57 58 59 60	$7 \\ 5 \\ 6 \\ 1$	4 3 5 5 0	2 2 1 4	0 0 0 3	1	0	
11 12 13 14 15	$2 \\ 6 \\ 4 \\ 5 \\ 1$	0 4 3 3 0	1 1 1	0 0 0				$egin{array}{c} 61 \\ 62 \\ 63 \\ 64 \\ 65 \end{array}$	$5 \\ 6 \\ 1 \\ 4 \\ 4$	2 5 0 3 3	1 3 ,1	0 0 0 0			
16 17 18 19 20	5 3 5 5 3	3 0 2 2 0	2 1 1	0 0 0				66 67 68 69 70	8 5 7 6 5	6 2 5 5 3	$5 \\ 1 \\ 1 \\ 2 \\ 1$	3 0 0 0 0	2	0	
$21 \\ 22 \\ 23 \\ 24 \\ 25$	$2 \\ 1 \\ 5 \\ 4 \\ 3$	0 0 0 3 0	1	0				71 72 73 74 75	5 6 4 7 6	3 4 3 4 3	1 3 2 3 1	0 2 0 0 0	1	0	
26 27 28 29 30	6 5 2 6	2 2 0 0 4	1 1 1	0 0 0				76 77 78 79 80	5 6 7 4 7	$ \begin{array}{r} 4 \\ 5 \\ 2 \\ 3 \\ 5 \end{array} $	$2 \\ 2 \\ 1 \\ 2 \\ 3$	0 0 0 2	1	0	
31 32 33 34 35	3 7 6 7 2	0 5 4 6 0	3 1 5	$2 \\ 0 \\ 2$	1 1	0 0		81 82 83 84 85	4 8 7 8 8	0 7 4 7 2	${6 \atop 2} \\ {5 \atop 1}$	4 0 3 0	1 1	0 0	
36 37 38 39 40	${ \begin{array}{c} 6 \\ 5 \\ 6 \\ 4 \\ 5 \end{array} }$	5 4 5 0 4	4 3 1 3	2 2 0 0	1 1	0 0		86 87 88 89 90	6 7 8 6 5	5 5 5 3	$2 \\ 1 \\ 4 \\ 3 \\ 2$	0 0 3 0 0	1	0	
41 42 43 44 45	$3 \\ 5 \\ 6 \\ 4$	0 4 4 5 3	${3\atop {3\atop {2\atop {1}}}}$	2 0 0 0	1	0		91 92 93 94 95	7 6 2 6 6	6 5 0 5 5	$5 \\ 2 \\ 1 \\ 4$	3 0 0 2	2 1	0	
46 47 48 49 50	8 5 7 6 4	5 0 5 3	3 4 4 2	2 2 0 0	1 1	0 0		96 97 98 99 100	7 6 7 7 8	6 0 4 5 7	4 3 4 2	3 2 0 0	2 1	0 0	
107	7	5	3	2	1	0		127	1	0					-

Primitive Polynomials (mod 2)

~