Primitive Polynomials (Mod 2)

By E. J. Watson

The following list contains one example of a primitive polynomial (mod 2) for each degree $n, 1 \leqq n \leqq 100$. It was compiled with the aid of the Mercury computer at Manchester University by the following method.

The polynomials $P_{n}(x)(\bmod 2)$ of degree n were tested in their natural order until a primitive polynomial was found. The test comprised three stages. In the first stage the small primes, of degree up to 9 , were tried as possible factors $(\bmod 2)$ of P_{n}. If no factor was found P_{n} went forward to the second stage, which tested whether P_{n} divides $x^{N}-1$, where $N=2^{n}-1$. If it does, and N is prime (a Mersenne prime), this suffices to prove that P_{n} is primitive. If N is composite, however, P_{n} might divide $x^{M}-1$, where M is a factor of N, and then P_{n} would not be primitive. The third stage was, therefore, a trial of this possibility, in which M took the values N / p, where p runs through the prime factors of N.

The two latter stages were carried out by a process in which the computer repeated the operations of squaring, possibly multiplying by x (depending on the binary representation of M), then dividing by P_{n}. The prime factors of N were taken from the tables of Kraïtchik [1], supplemented by Robinson's [2] further decomposition of $2^{95}-1$. If any more of these 'prime' factors should turn out to be composite, doubt would be cast on the corresponding P_{n}. Mersenne polynomials for $n=107$ and 127 are also given. The prime $x^{127}+x+1$ was found by Zierler [3]. Its nature follows from the general result that if $\Sigma a_{n} x^{n}$ divides $\Sigma c_{n} x^{n}(\bmod p)$, then

$$
\Sigma a_{n} x^{p^{n}} \quad \text { divides } \quad \Sigma c_{n} x^{p^{n}} \quad(\bmod p)
$$

The primitive character of each polynomial $P_{n}(x)$ listed has been checked by a repetition of the second and third stages on the conjugate polynomial $x^{n} P_{n}\left(x^{-1}\right)$. In the list only the degrees of the separate terms in P_{n} are given, thus

$$
127 \quad 1 \quad 0 \quad \text { stands for } \quad x^{127}+x+1
$$

Department of Mathematics

University of Manchester

1. M. Kraïtchik, Introduction à la Théorie des Nombres, Gauthier-Villars, Paris, 1952.
2. R. M. Robinson, "Some factorizations of numbers of the form $2^{n} \pm 1$, ," $M T A C, \mathrm{v} .11$, 1957, p. 265-268.
\rightarrow N. Zierler, "Linear recurring sequences," J. Soc. Indust. Appl. Math., v. 7, 1959, p. 31-48.

Received December 18, 1961.

Primitive Polynomials (mod 2)

1	0						51	6	3	1	0		
2	1	0					52	3	0				
3	1	0					53	6	2	1	0		
4	1	0					54	6	5	4	3	2	0
5	2	0					55	6	2	1	0		
6	1	0					56	7	4	2	0		
7	1	0					57	5	3	2	0		
8	4	3	2	0			58	6	5	1	0		
9	4	0					59	6	5	4	3	1	0
10	3	0					60	1	0				
11	2	0					61	5	2	1	0		
12	6	4	1	0			62	6	5	3	0		
13	4	3	1	0			63	1	0				
14	5	3	1	0			64	4	3	1	0		
15	1	0					65	4	3	, 1	0		
16	5	3	2	0			66	8	6	5	3	2	0
17	3	0					67	5	2	1	0		
18	5	2	1	0			68	7	5	1	0		
19	5	2	1	0			69	6	5	2	0		
20	3	0					70	5	3	1	0		
21	2	0					71	5	3	1	0		
22	1	0					72	6	4	3	2	1	0
23	5	0					73	4	3	2	0		
24	4	3	1	0			74	7	4	3	0		
25	3	0					75	6	3	1	0		
26	6	2	1	0			76	5	4	2	0		
27	5	2	1	0			77	6	5	2	0		
28	3	0					78	7	2	1	0		
29	2	0					79	4	3	2	0		
30	6	4	1	0			80	7	5	3	2	1	0
31	3	0					81	4	0				
32	7	5	3	2	1	0	82	8	7	6	4	1	0
33	6	4	1	0			83	7	4	2	0		
34	7	6	5	2	1	0	84	8	7	5	3	1	0
35	2	0					85	8	2	1	0		
36	6	5	4	2	1	0	86	6	5	2	0		
37	5	4	3	2	1	0	87	7	5	1	0		
38	6	5	1	0			88	8	5	4	3	1	0
39	4	0					89	6	5	3	0		
40	5	4	3	0			90	5	3	2	0		
41	3	0					91	7		5		2	0
42	5	4	3	2	1	0	92	6	5	2	0		
43	6	4	3	0			93	2	0				
44	6	5	2	0			94	6	5	1	0		
45	4	3	1	0			95	6	5	4	2	1	0
46	8	5	3	2	1	0	96	7	6	4	3	2	0
47	5	0					97	6	0				
48	7	5	4	2	1	0	98	7	4	3	2	1	0
49	6	5	4	0			99	7	5	4	0		
50	4	3	2	0			100	8	7	2	0		
107	7	5	3	2	1	0	127	1	0				

